The opinions and assertions are those of the authors and do not reflect the views or policies of the DoD or the US government.
Goal of the Study

- To determine an imputation method to be used for Health Care Survey of DoD Beneficiaries (HCSDB) item nonresponse

- Impute or not to impute?

 OMB Guideline (2006):
 - If IRR < 70%, conduct item nonresponse bias analysis
 - Unlike unit nonresponse, nonresponse adjustment like imputation is NOT required for item nonresponse
Why Imputation for Item Nonresponse?

- **No imputation**
 - Cumulative item nonresponse rates can be prohibitively large
 - Substantial reduction of valid data for multivariate analysis

- **Imputation**
 - Provide a complete dataset for analysis
 - Fill in troublesome missing data for data users
 - Prevent multivariate software packages from ignoring observations with missing data
 - Hopefully reduce nonresponse bias
HCSDB

- Quarterly survey on the military health system’s beneficiaries’ opinions about their DoD health care benefits
- Administered by TRICARE Management Activity (TMA)
- A stratified random sample: partitions beneficiaries based on enrollment type, beneficiary group, and geographic areas
- Item nonresponse rates of HCSDB key items:
 - Between 2% – 13%: Moderate
 - Similar nonresponse rates across quarters
• MPR’s research on the need of imputation:
 • Ready to implement imputation to all survey items?
 • Which one—hot-deck or multiple imputation?
 • Compare through empirical investigation, including simulation works

• Imputation methods considered:
 • For single imputation, within-class unweighted sequential hot deck method
 • For multiple imputation, sequential regression multivariate imputation technique (SRMI)
Within-class Unweighted Sequential Hot-deck

- In-house SAS macros developed based on Carlson, Cox, and Bandeh (1995)

- HCSDB hot-deck:
 - 53 variable candidates for covariates, including survey items, demographic and sampling variables
 - modeling to choose control variables (\(\alpha = 10\% \))
Sequential Regression Multivariate Imputation (SRMI)

- Raghunathan, Lepkowski, Hoewyk, and Solenberger (2001)
- Y_1, Y_2, \ldots, Y_k denote k survey items with missing values
- X denotes a set of fully observed covariates

\[
 f(Y_1, Y_2, \ldots, Y_k | X, \theta_1, \theta_2, \ldots, \theta_k) = \\
 f(Y_1 | X, \theta_1) f(Y_2 | X, Y_1, \theta_2) \cdots f(Y_k | X, Y_1, Y_2, \ldots, Y_{k-1}, \theta_k)
\]
SRMI

- Each $f(Y_i|\cdot)$ is modeled through a regression model appropriate for the variable type of Y_i
- Imputation for missing Y_i is then drawn from a posterior predictive distribution of Y_i through the regression model
- Each imputation is done iteratively through c rounds
Multiple Imputation

Results in M datasets

$$\hat{\theta}_M = \frac{1}{M} \sum_{i=1}^{M} \hat{\theta}_i$$

$$\text{var}(\hat{\theta}_M) = W_M + \left(1 + \frac{1}{M}\right)B_M$$

where

$\hat{\theta}_M$ = estimate based on multiply imputed data

$\hat{\theta}_i$ = estimate based on the i-th imputed value

$\text{var}(\cdot)$ = variance of the estimate
Multiple Imputation

Variance component

\[W_M = \frac{1}{M} \sum_{i=1}^{M} \text{var}(\hat{\theta}_i) = \text{within-imputation variance component}, \]

\[B_M = \frac{1}{M - 1} \sum_{i=1}^{M} \left(\hat{\theta}_i - \hat{\theta}_M \right)^2 = \text{between-imputation variance component}. \]
MI Implementation: IVEware

- Raghunathan, Solenberger, and Van Hoewyk (2002)
- SAS-callable software application
- Proper regression model for Y_j
- Model-building algorithm, variable interactions, stepwise method, specified minimum marginal R^2
- Accounts for complex data structures from a complex questionnaire, e.g. skip pattern/restriction and bounds
Among predictors were key sampling and demographic variables.

- Used survey weights and weighting adjustment cells as predictors.

- Computation for categorical variables with many categories can take a great deal of computational time.
Simulation Study

- Use of Quarter 1 of 2003 HCSDB response data
- Generate missing values with missing rates of 2 – 13% under three different missing mechanisms (MCAR, MAR, NMAR)
- Impute using hotdeck and multiple imputations
- Two variance estimators under hot-deck imputed data
 - Assume the imputed value as if it were a true value
 - TS method
 - Jackknife
- Compare estimates and MSE (bias and variance)
Results for Selected Variable

Variable H03023 (88.7% response rate)

Mean Diff \((p) \) = \(\frac{1}{R} \sum_{r=1}^{R} (p_r - p_0) \times 100\% \)

Square-root Mean Square Diff \((p) \) = \(\sqrt{\frac{1}{R} \sum_{r=1}^{R} (p_r - p_0)^2} \times 100\% \)

\[\text{Rel.var} = \frac{1}{R} \sum_{r=1}^{R} \frac{V_r}{V_0} \times 100\% \]
Mean of Diff for MAR (Missing at Random) by XW CATCH

Variable HO3023 (In last yr: get care as soon as wanted) with response rate of 88.7%

Crosswalk for Reported Catchment Area

PLOT: - Red squares: Hotdeck - Green stars: Multiple - Black circles: No imputation

Department of Defense
Policy Research, Inc.
Mean of Diff for NMAR (Not Missing at Random) by XWCATCH

Variable HO3023 (In last yr: get care as soon as wanted) with response rate of 88.7%

Crosswalk for Reported Catchment Area

Plot: □ Hotdeck ■ Multiple •• No imputation

Mean of Difference

-4.0 -3.0 -2.0 -1.0 0.0 1.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Bias for MAR (Missing at Random) by XWCATCH

Variable H03023 (In last yr: got care as soon as wanted)

with response rate of 88.7%
Bias for NMAR (Not Missing at Random) by XWCATCH

Variable H03023 (In last yr: get care as soon as wanted) with response rate of 88.7%
Relative Variance for MAR (Missing at Random) by XWCATCH

Variable H03023 (In last yr: got care as soon as wanted)

with response rate of 88.7%
Results

- Bias due to item missing
 - Not a major concern for univariate analyses in HCSDB
- Imputation increases effective sample sizes
 - Better precision
 - Need to account for imputation variability
- Multiple imputation
 - Good for bias reduction
 - Reasonable variance estimation
 - Multiple datasets
Results

- Hotdeck imputation
 - Produce a single survey data with complete rectangular data units
 - Provides consistent results
 - Variance estimation complicate: not user friendly
 - Alternatives: GVF or design effect type inflation factor